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Abstract 
PSDG is a parallel synthetic data generator designed to 
generate “industrial sized” data sets quickly using 
cluster computing.  PSDG depends on SDDL, a 
synthetic data description language that provides 
flexibility in the types of data we can generate. 

Introduction 
The IT industry need synthetic data generation tools for 
applications including: 

• Regression testing.  Repeatedly generate the same 
large data set for testing enterprise applications. 

• Secure application development.  Develop 
enterprise applications using generated data that is 
realistic but not real. 

• Testing of data mining applications.  Generate data 
sets with known characteristics to gauge whether 
data mining tools can discover those characteristics. 

Several synthetic data generation tools already exist in 
the commercial world [1-4].  These tools can generate 
modest amounts of easily described data.  However, 
they do not scale for generating “industrial-sized” (i.e., 
terabyte) data sets. 

Data generation tools have recently been developed in 
the academic world as well [5-7].  These present new 
concepts in the form of graph- and language-oriented 
synthetic data description, providing greater flexibility 
in the description and generation of synthetic data. 

In this paper, we present the Parallel Synthetic Data 
Generator (PSDG).  PSDG is designed to generate data 
across multiple processors.  This allows PSDG to 
harness the power of cluster/grid computing to generate 
huge data sets with linear speedup.  Parallel execution 
involves more than launching several generators 
simultaneously.  PSDG will generate constant output 
(for a given input file) regardless of the degree of 
parallelism.  This repeatable determinism is a 
requirement for regression testing applications.  

PSDG is written in Java so it is portable across 
platforms.  Although PSDG supports direct-to-database 
data generation, it is generally quicker to generate the 
data to file(s) and then use a fast load utility to upload 
data into a database.  

This paper also describes Synthetic Data Description 
Language (SDDL). SDDL files serve as input to 
PSDG.  SDDL is an XML-based language that codifies 
the manner in which generated data can be described 
and constrained.  Rich description mechanisms 
available in SDDL enable generation of a variety of 
kinds of synthetic data.  

In the following section, we document features of 
SDDL.  Next, we discuss the concept of pools.  Then 
we describe mechanisms that produce deterministic 
data sets over an arbitrary number of processors. We 
conclude with performance data and future directions. 

SDDL 
SDDL is an XML-based language that provides the 
user flexibility in describing and constraining 
synthetically generated data.  While SDDL was 
developed along with PSDG, it is intended to be 
expressive and could be used as input by other 
synthetic data generators.  SDDL is similar in concept 
to DGL [5] with important differences: 

• SDDL is XML-based while DGL is C-like 
• SDDL constructs are designed to produce identical 

results across any number of generation processes 
• While DGL provides powerful stream-based data 

generators, SDDL generation constructs are more 
modular and understandable 

SDDL describes at its outer level a “database” element, 
which is composed of zero or more pool elements and 
one or more table elements.  Pools will be described 
later. The following is a valid (if trivial) SDDL file: 

<?xml version="1.0" encoding="UTF-8"?> 
<database> 
  <seed>1240958412</seed> 

  <pool name=”colors”> 
    <choice=”red”/> 
    <choice=”green”/> 
    <choice=”blue”/> 
  </pool> 

  <table name="PAIRS" length="5"> 
    <field name="F1" type="int"> 
      <min>1</min> 
      <max>50</max> 
    </field> 
    <field name="F2" type="CHAR(5)"> 



      <formula>colors</formula> 
    </field> 
  </table> 
</database> 

The file above, when input to PSDG, would result in 
the synthesis of a relation named PAIRS, which might 
look like: 

F1 F2 
34 green 
10 blue 
47 green 
17 red 
8 red 

A table element contains all information needed to 
synthesize a table, including a name attribute, a length 
attribute, and one or more embedded field elements.  
The attributes associated with the generated table are 
defined by the field elements within the table element.   

Each field element has “name” and “type” attributes.  
Field types can be one of int, real, string, bool, date, 
time or timestamp.  Field types can also be defined as 
standard SQL data types, i.e., CHAR(n), VARCHAR(n), 
NUMERIC(m,n). 

Each field also contains a generation constraint.  SDDL 
currently supports five types of generation constraints: 
min/max, distribution, formula, iteration, and 
queryPool.  Each are described below. 

Min/Max Constraints 
The user can specifies a minimum and maximum value 
for a field, e.g., 

<field name=”age” type=”int”> 
  <min>20</min> 
  <max>65</max> 
</field> 

In this example, generated values for the age attribute 
are randomly distributed between 20 and 65, inclusive. 

Distribution Constraints 
A distribution constraint is a set of min/max constraints 
(called “tiers”), each of which has a specified statistical 
probability of being selected: 

<field name=”age” type=”int”> 
  <dist> 
    <tier prob=”0.50” min=”20” max=”30”/> 
    <tier prob=”0.30” min=”31” max=”50”/> 
    <tier prob=”0.20” min=”51” max=”65”/> 
  </dist> 
</field> 

In this example, the generated age column values 
would have a 50% chance of being between 20 and 30, 
a 30% chance of being between 31 and 50, and a 20% 
chance of being between 51 and 65. 

Formula Constraints 
Using a formula constraint, a field can be defined in 
terms of a mathematical formula consisting of 
operators, constants, built-in functions, and other field 
values, for example: 

<field name=”ship_date” type=”date”> 
  <formula>order_date+IRND(4)</formula> 
</field> 

In this example, the ship_date field will be equal to the 
order_date field plus anywhere from 0 to 3 days. 

Formula constraints can also contain pool references as 
discussed in the Pools section below. 

Iterations 
Iterations constrain the generator to iterate through a 
set of values for a specified column.  If a table contains 
one or more iteration-constrained fields, then the length 
of the table will be governed by the iteration results.  
SDDL supports three kinds of iterations: query, pool, 
and count iterations. 

Query iterations allow a column to iterate through the 
results of a query.  For example: 

<field name=”store_nbr” type=”int”> 
  <iteration query=”select store_nbr from stores”/> 
</field> 

In this example, the generated store_nbr column values 
would iterate through the store_nbr column values in 
the stores table.   

Similarly, iterations can iterate through pool choices: 

  <iteration pool=”states”/> 

or numeric values: 

  <iteration base=”1” count=”100”/> 

By default, an iteration results in one row of output for 
each element of its set.  However, the user can specify 
repetition of iteration elements: 

  <field name=”F1” type=”int”> 
  <iteration base=”1” count=”5”> 
    <repeatMin>3</repeatMin> 
    <repeatMax>6</repeatMax> 
  </iteration> 
</field> 

In the example above, the F1 attribute would contain 
the values 1 through 5, each repeated anywhere from 3 



to 6 times.  Iteration repeat constraints can also be 
specified with a statistical distribution: 

<field name=”F1” type=”int”> 
  <iteration base=”1” count=”5”> 
    <repeatDist> 
      <tier prob=”0.70” min=”3” max=”5”/> 
      <tier prob=”0.30” min=”6” max=”6”/> 
    </repeatDist> 
  </iteration> 
</field> 

If there are multiple iteration-constrained fields in a 
table, they are considered to be nested, with the nesting 
order the same as the order of appearance in the table 
description.  Consider the following table definition:   

<table name=”nesting_example”> 
  <field name=”A” type=”int”> 
    <iteration base=”5” count=”3”/> 
  </field> 
  <field name=”B” type=”int”> 
    <iteration base=”100” count=”2”/> 
  </field> 
</table> 

The nesting_example table will always generate: 

A B 
5 100 
5 101 
6 100 
6 101 
7 100 
7 101 

Query Pools 
Query pools are used to enforce referential integrity 
constraints.  Using query pools, the value of a field is 
chosen from the result of a query.  In the following                                                            
example, values generated in the StudentID field would 
be valid IDs from the students table. 

<field name=”StudentID” type=”int”> 
  <queryPool>select ID from students</queryPool> 
</field> 

Pools 
Pools are hierarchically structured SDDL elements that 
can serve as user-defined domains, sources of reference 
information, and modeling tools.  

 In SDDL, a pool element must have a name attribute 
and is composed of one or more choice elements.  Each 
choice element must have a name attribute and can 
optionally be composed of sub-pools and auxiliary data 
items.  Pools are modular.  Reusable pools can be 
stored in separate files and imported into SDDL files. 

The following pool provides a domain for states: 

<pool name=”states”> 
  <choice name=”AK”/> 
  <choice name=”AL”/> 
  <choice name=”AR”/> 
  … 
  <choice name=”WV”/> 
  <choice name=”WY”/> 
</pool> 

The pool can be accessed from a formula constraint as 
follows: 

<field name=”state” type=”CHAR(2)”> 
  <formula>states</formula> 
</field> 

Using the formula, each entry in the “states” pool has a 
1-in-50 chance of being output for each row of the 
“state” field.  However, we could make the “states” 
pool more interesting: 

<pool name=”stateZip”> 
  <choice name=”AK”> 
    <pool name="zips"> 
      <choice name="99501"> 
          <city>ANCHORAGE</city> 
          <county>ANCHORAGE</county> 
          <weight>16211</weight> 
      </choice> 
      <choice name="99502"> 
          <city>ANCHORAGE</city> 
          <county>ANCHORAGE</county> 
          <weight>18626</weight> 
      </choice> 
      … 
    </pool> <!—end of “zips” sub-pool--> 
    <weight>624992</weight> 
  </choice> <!—end of “AK” choice--> 
  … 
  <choice name="WY"> 
    <pool name="zips"> 
      <choice name="82001"> 
          <city>CHEYENNE</city> 
          <county>LARAMIE</county> 
          <weight>34767</weight> 
      </choice> 
      <choice name="82007"> 
          <city>CHEYENNE</city> 
          <county>LARAMIE</county> 
          <weight>15840</weight> 
      </choice> 
      … 
    </pool> <!—end of “zips” sub-pool--> 
    <weight>493502</weight> 
  </choice> <!—end of “WY” choice--> 
</pool> <!—end of “stateZip” pool--> 



The stateZip pool above is a population model of the 
U.S. taken from publicly available 2000 Census data 
(www.census.gov).  At the top level, there are still 50 
states in the pool.  Each state contains a pool of zip 
codes; each choice in the zips sub-pool contains the 
city and county associated with the zip code.  Both the 
top-level states pool and the nested zips pools are 
weighted by population. 

Consider the following SDDL table definition that uses 
the stateZip pool: 

<table name=”offices”> 
  <field name=”OfficeID” type=”int”> 
    <iteration base=”1000” count=”1000”/> 
  </field> 
  <field name=”state” type=”CHAR(2)”> 
    <formula>stateZip</formula> 
  </field> 
  <field name=”zip” type=”CHAR(5)”> 
    <formula>stateZip[state].zips</formula> 
  </field> 
  <field name=”city” type=”CHAR(25)”> 
    <formula>stateZip[state].zips[zip].city</formula> 
  </field> 
</table> 

The offices table generated from the definition above 
will have information for 1000 offices.  Offices will be 
distributed within the U.S. according to inter-state and 
intra-state population statistics. The state, city, and zip 
fields generated for each row will be consistent with 
each other. 

Given this structural and semantic flexibility, pools can 
be used to describe a variety of complex data types.  
Using pools, we have so far modeled such diverse 
concepts as graphs, maps, state machines, and context-
free grammars.    

Parallel Data Generation 
Multi-processor systems (clusters, grids) are 
increasingly affordable.  The size of data sets is 
growing – terabyte-sized tables are not uncommon.  
Why not take advantage of the former to synthetically 
generate the latter? 

We designed PSDG with parallel generation capability 
as a requirement.  We wanted to minimize 
communication between generation processes and 
maintain deterministic output (for a given input) 
regardless of the degree of parallelism. 

Previous synthetic data generation frameworks have 
supported parallelism to some degree.  Gray et al. [8] 
described methods for writing special-purpose data 
generators in parallel.  The MUDD generator [11] 
provided a general purpose (though simple) input 

language, and decoupled the data description from the 
parallelization details.  The KRDataGenerator [12] (a 
commercialization of [6]), which is graph-based, has a 
distributed generation capability but can not describe 
data with the detail of SDDL. 

PSDG distinguishes itself by providing a very 
descriptive input language (SDDL) while supporting 
easy parallelism.  Like MUDD, PSDG decouples data 
generation details from data description; users need not 
take parallelism details into account when constructing 
an SDDL file.   

Each PSDG generation process is launched with the 
knowledge of how many processes are participating, as 
well as its own process index.  With this information, a 
generation process can determine the extent of the data 
that it is responsible for generating without the need for 
inter-process communication. 

PSDG slices the generated data horizontally between 
generation processes. Generation processes handle 
slices in a “striped” fashion: process 0 of N will 
generate slices {0, N, 2N,…}, process 1 of N will 
generate slices {1, N+1, 2N+1,…}, and so on.  We can 
use two separate methods of data slicing: Algorithm 1 
is used when there are no iterations in the SDDL 
description (for a table), and Algorithm 2 is used when 
iterations are present. 

Generation Algorithm 1 
With no iterations present, a table’s row structure is 
predictable, and its rows are divided into “swaths”, 
each of size SWATHSIZE.  The generation processes 
generate swaths in an alternating round-robin fashion. 
Before generating a swath, the generation process will 
call the re-seed function RF(seed, row) (where seed is 
the user-specified seed, and row is the start row of the 
swath), which uses seed and row to re-seed the random 
number generator.  

If there is only one generation process, generation 
proceeds as follows (assuming SWATHSIZE = 100): 

 
 
 
 
 
 
 
 

If there are two generation processes, the generation 
proceeds in parallel as follows: 

 
 

Process 0: 
RF(seed,0) 
Generate rows 0-99 
RF(seed,100) 
Generate rows 100-199 
RF(seed,200) 
Generate rows 200-299 
… 

 



 
 
 
 
 
 
 

The random number generator is always re-seeded to a 
deterministic value (based on the user-specified seed 
and the row number) before generating a swath.  Thus 
any particular swath will be generated identically 
regardless of the number of processes participating in 
the generation.     

Note that the load balancing for Algorithm 1 is even; 
each generation process generates at most SWATHSIZE 
more rows than any other generation process. 

Generation Algorithm 2 
When iterations are present, it becomes more difficult 
to deal out constant-sized swaths to each generation 
process.  Consider the following SDDL snippet: 
 

<table name=”iteration_example”> 
  <field name=”deptID” type=”int”> 
    <iteration query=”select ID from departments”/> 
  </field> 
  <field name=”courseID” type=”int”> 
    <iteration query=”select ID from courses where  
         deptID = [deptID]”/> 
  </field> 
</table> 

How many courseID rows will be generated for each 
deptID value?  We can’t really tell before running the 
actual queries.  As a consequence, we don’t know a 
priori how to divide the output into equal-sized slices. 

However, we do know the number of elements in any 
outer iteration element.  For query iterations, it is the 
number of elements returned by the given query.  For 
pool iterations, it is the number of choices in the 
specified pool.  For numeric iterations, it is the value of 
the count attribute.  Therefore, the table is sliced up 
into outer iteration elements (OIEs). 

When a single generation process performs generation 
algorithm 2, the following occurs: 
 
 
 
 
 
 
 
 
 

With 2 processes, the generation proceeds as follows: 
 
 
 
 
 
 

Again, the random number generator is always re-
seeded to a deterministic value before generating the 
rows associated with an outer iteration element.  Thus 
the rows associated with any OIE will be generated 
identically regardless of the number of processes 
participating in the generation. 

Note that Algorithm 2 is balanced with respect to the 
number of OIEs assigned to the generation processes; 
each generation process will handle the generation of at 
most one more OIE than its peers.  However, the 
number of rows associated with an OIE is not 
guaranteed to be constant.  Therefore, it is possible for 
the generation to be unbalanced in terms of the number 
of rows generated per generation process. 

Performance 
As a reference point for generation speed, we generated 
the SetQuery [9] and TPC-C [10] benchmark data sets:   

Generated MB/Second  
Data Set 1 processor 2 processors 
Set-Query 5.41 10.69 
TPC-C (W=1) 3.58 6.73 

The results above were obtained using Pentium 4 
processors running at 3 GHz.  The slightly sub-linear 
speedup is due to serial functionality embedded in our 
current iteration logic (which we are removing).  

More importantly, we’ve benchmarked PSDG in real-
world applications.  We recently collaborated with a 
major retailer on a project involving the generation of 
10 years worth of realistic store-item-sales data, 
resulting in 70 billion rows, or nearly 5 Terabytes of 
data.  This data had fairly complex inter- and intra-row 
dependencies.  Running PSDG across 16 1.6-GHz 
Itanium processors, we were able to reach data 
generation speeds of over 500,000 rows/second.  

Conclusion and Future Directions 
SDDL provides the functionality and expressiveness 
needed in a synthetic data description language.  Pools 
provide for user-defined domains and data dictionaries.  
Formulas and pools allow for intra-row dependencies.  
Min/max and distribution constraints support loose 
inter-row dependencies, and iteration variables (not 
discussed here) support tight inter-row dependencies.  
Query pools and query iterations allow for inter-table 

Process 0:  Process 1: 
RF(seed,0)  RF(seed,1) 
Generate OIE 0  Generate OIE 1 
RF(seed,2)  RF(seed,3) 
Generate OIE 2  Generate OIE 3 
…   … 

 

Process 0: 
RF(seed,0) 
Generate OIE 0 
RF(seed,1) 
Generate OIE 1 
RF(seed,2) 
Generate OIE 2 
… 

 

Process 0:            Process 1: 
RF(seed,0)           RF(seed,100) 
Generate rows 0-99      Generate rows 100-199 
RF(seed,200)          RF(seed,300) 
Generate rows 200-299 Generate rows 300-399 
…   … 

 



dependencies.  SDDL pools allow for modeling a rich 
array of concepts, from simple domains and reference 
tables to graphs, maps, state machines and context-free 
grammars. 

While SDDL does not currently support the complex 
statistical distributions found in [5] and [8], it does 
support the use of user-defined plugin functions in 
formulas.  Complex data distributions (such as 
Gaussian and Zipfian distributions) can be enforced 
using this mechanism.  

The data generator itself (PSDG) provides partitioning 
algorithms that allow for the parallel generation of data 
sets.  This parallel capability makes it possible to 
generate large “industrial size” data sets quickly.  Our 
partitioning algorithms balance processor loads and 
make sure that the data generated from a given input 
will be the same regardless of the number of processors 
across which it is generated.  Such deterministic 
behavior makes PSDG useful for generating regression 
test data sets. 

In our design of both SDDL and PSDG, we aimed to 
satisfy two goals: (1) provide a rich, flexible, 
extendible synthetic data description language, and (2) 
support deterministic parallel generation of data sets.  
When these two goals have conflicted, we have so far 
given priority to the latter.  For example, allowing for 
“side-by-side” iterations, in addition to nested 
iterations, would enhance the descriptive power of 
SDDL.  However, side-by-side iterations would be 
difficult to partition and parallelize, so we have so far 
chosen not to implement them.  

A number of improvements to PSDG/SDDL are 
planned: 

• Add SDDL constructs to allow PSDG to handle 
circular inter-table data dependencies and 
simultaneous multi-table generation 

• Add support for passing environment and 
command-line generation variables to PSDG, 
allowing for the use of a single SDDL file to 
generate a number of different data sets  

• Add streaming output for applications that require 
continuous feeds 

In addition to its XML-based specification language 
(SDDL), the PSDG engine currently provides a GUI-
based user interface so users can edit SDDL 
specifications and control the generation of data sets 
using a more user friendly interface.  The PSDG engine 
also includes an ODBC connection to remote relational 
databases so data and pools can be imported or 
exported.  It is often important to sanitize a real dataset 
before release to another organization. We are working 
on extending PSDG to extract statistical and 
descriptive data from relational databases to facilitate 

auto-generation of scrubbed data sets.  The user will 
specify the desired degree of reality of the scrubbed 
copy that PSDG will generate. 

In addition to working to improve our data generation 
framework, we are collaborating with industrial 
partners to extend the modeling capability of SDDL.  
One significant target is realistic supply chain data 
showing RFID reads throughout a supply chain that 
spans manufacturing, transport, warehousing, and 
retailing. 

For more information on this project, see [13]. 
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