
A Parallel General-Purpose Synthetic Data Generator

Joseph E. Hoag, Craig W. Thompson
Computer Science Computer Engineering Department

University of Arkansas
{jhoag, cwt}@uark.edu

Abstract
PSDG is a parallel synthetic data generator designed to
generate “industrial sized” data sets quickly using
cluster computing. PSDG depends on SDDL, a
synthetic data description language that provides
flexibility in the types of data we can generate.

Introduction
The IT industry need synthetic data generation tools for
applications including:

• Regression testing. Repeatedly generate the same
large data set for testing enterprise applications.

• Secure application development. Develop
enterprise applications using generated data that is
realistic but not real.

• Testing of data mining applications. Generate data
sets with known characteristics to gauge whether
data mining tools can discover those characteristics.

Several synthetic data generation tools already exist in
the commercial world [1-4]. These tools can generate
modest amounts of easily described data. However,
they do not scale for generating “industrial-sized” (i.e.,
terabyte) data sets.

Data generation tools have recently been developed in
the academic world as well [5-7]. These present new
concepts in the form of graph- and language-oriented
synthetic data description, providing greater flexibility
in the description and generation of synthetic data.

In this paper, we present the Parallel Synthetic Data
Generator (PSDG). PSDG is designed to generate data
across multiple processors. This allows PSDG to
harness the power of cluster/grid computing to generate
huge data sets with linear speedup. Parallel execution
involves more than launching several generators
simultaneously. PSDG will generate constant output
(for a given input file) regardless of the degree of
parallelism. This repeatable determinism is a
requirement for regression testing applications.

PSDG is written in Java so it is portable across
platforms. Although PSDG supports direct-to-database
data generation, it is generally quicker to generate the
data to file(s) and then use a fast load utility to upload
data into a database.

This paper also describes Synthetic Data Description
Language (SDDL). SDDL files serve as input to
PSDG. SDDL is an XML-based language that codifies
the manner in which generated data can be described
and constrained. Rich description mechanisms
available in SDDL enable generation of a variety of
kinds of synthetic data.

In the following section, we document features of
SDDL. Next, we discuss the concept of pools. Then
we describe mechanisms that produce deterministic
data sets over an arbitrary number of processors. We
conclude with performance data and future directions.

SDDL
SDDL is an XML-based language that provides the
user flexibility in describing and constraining
synthetically generated data. While SDDL was
developed along with PSDG, it is intended to be
expressive and could be used as input by other
synthetic data generators. SDDL is similar in concept
to DGL [5] with important differences:

• SDDL is XML-based while DGL is C-like
• SDDL constructs are designed to produce identical

results across any number of generation processes
• While DGL provides powerful stream-based data

generators, SDDL generation constructs are more
modular and understandable

SDDL describes at its outer level a “database” element,
which is composed of zero or more pool elements and
one or more table elements. Pools will be described
later. The following is a valid (if trivial) SDDL file:

<?xml version="1.0" encoding="UTF-8"?>
<database>
 <seed>1240958412</seed>

 <pool name=”colors”>
 <choice=”red”/>
 <choice=”green”/>
 <choice=”blue”/>
 </pool>

 <table name="PAIRS" length="5">
 <field name="F1" type="int">
 <min>1</min>
 <max>50</max>
 </field>
 <field name="F2" type="CHAR(5)">

 <formula>colors</formula>
 </field>
 </table>
</database>

The file above, when input to PSDG, would result in
the synthesis of a relation named PAIRS, which might
look like:

F1 F2
34 green
10 blue
47 green
17 red
8 red

A table element contains all information needed to
synthesize a table, including a name attribute, a length
attribute, and one or more embedded field elements.
The attributes associated with the generated table are
defined by the field elements within the table element.

Each field element has “name” and “type” attributes.
Field types can be one of int, real, string, bool, date,
time or timestamp. Field types can also be defined as
standard SQL data types, i.e., CHAR(n), VARCHAR(n),
NUMERIC(m,n).

Each field also contains a generation constraint. SDDL
currently supports five types of generation constraints:
min/max, distribution, formula, iteration, and
queryPool. Each are described below.

Min/Max Constraints
The user can specifies a minimum and maximum value
for a field, e.g.,

<field name=”age” type=”int”>
 <min>20</min>
 <max>65</max>
</field>

In this example, generated values for the age attribute
are randomly distributed between 20 and 65, inclusive.

Distribution Constraints
A distribution constraint is a set of min/max constraints
(called “tiers”), each of which has a specified statistical
probability of being selected:

<field name=”age” type=”int”>
 <dist>
 <tier prob=”0.50” min=”20” max=”30”/>
 <tier prob=”0.30” min=”31” max=”50”/>
 <tier prob=”0.20” min=”51” max=”65”/>
 </dist>
</field>

In this example, the generated age column values
would have a 50% chance of being between 20 and 30,
a 30% chance of being between 31 and 50, and a 20%
chance of being between 51 and 65.

Formula Constraints
Using a formula constraint, a field can be defined in
terms of a mathematical formula consisting of
operators, constants, built-in functions, and other field
values, for example:

<field name=”ship_date” type=”date”>
 <formula>order_date+IRND(4)</formula>
</field>

In this example, the ship_date field will be equal to the
order_date field plus anywhere from 0 to 3 days.

Formula constraints can also contain pool references as
discussed in the Pools section below.

Iterations
Iterations constrain the generator to iterate through a
set of values for a specified column. If a table contains
one or more iteration-constrained fields, then the length
of the table will be governed by the iteration results.
SDDL supports three kinds of iterations: query, pool,
and count iterations.

Query iterations allow a column to iterate through the
results of a query. For example:

<field name=”store_nbr” type=”int”>
 <iteration query=”select store_nbr from stores”/>
</field>

In this example, the generated store_nbr column values
would iterate through the store_nbr column values in
the stores table.

Similarly, iterations can iterate through pool choices:

 <iteration pool=”states”/>

or numeric values:

 <iteration base=”1” count=”100”/>

By default, an iteration results in one row of output for
each element of its set. However, the user can specify
repetition of iteration elements:

 <field name=”F1” type=”int”>
 <iteration base=”1” count=”5”>
 <repeatMin>3</repeatMin>
 <repeatMax>6</repeatMax>
 </iteration>
</field>

In the example above, the F1 attribute would contain
the values 1 through 5, each repeated anywhere from 3

to 6 times. Iteration repeat constraints can also be
specified with a statistical distribution:

<field name=”F1” type=”int”>
 <iteration base=”1” count=”5”>
 <repeatDist>
 <tier prob=”0.70” min=”3” max=”5”/>
 <tier prob=”0.30” min=”6” max=”6”/>
 </repeatDist>
 </iteration>
</field>

If there are multiple iteration-constrained fields in a
table, they are considered to be nested, with the nesting
order the same as the order of appearance in the table
description. Consider the following table definition:

<table name=”nesting_example”>
 <field name=”A” type=”int”>
 <iteration base=”5” count=”3”/>
 </field>
 <field name=”B” type=”int”>
 <iteration base=”100” count=”2”/>
 </field>
</table>

The nesting_example table will always generate:

A B
5 100
5 101
6 100
6 101
7 100
7 101

Query Pools
Query pools are used to enforce referential integrity
constraints. Using query pools, the value of a field is
chosen from the result of a query. In the following
example, values generated in the StudentID field would
be valid IDs from the students table.

<field name=”StudentID” type=”int”>
 <queryPool>select ID from students</queryPool>
</field>

Pools
Pools are hierarchically structured SDDL elements that
can serve as user-defined domains, sources of reference
information, and modeling tools.

 In SDDL, a pool element must have a name attribute
and is composed of one or more choice elements. Each
choice element must have a name attribute and can
optionally be composed of sub-pools and auxiliary data
items. Pools are modular. Reusable pools can be
stored in separate files and imported into SDDL files.

The following pool provides a domain for states:

<pool name=”states”>
 <choice name=”AK”/>
 <choice name=”AL”/>
 <choice name=”AR”/>
 …
 <choice name=”WV”/>
 <choice name=”WY”/>
</pool>

The pool can be accessed from a formula constraint as
follows:

<field name=”state” type=”CHAR(2)”>
 <formula>states</formula>
</field>

Using the formula, each entry in the “states” pool has a
1-in-50 chance of being output for each row of the
“state” field. However, we could make the “states”
pool more interesting:

<pool name=”stateZip”>
 <choice name=”AK”>
 <pool name="zips">
 <choice name="99501">
 <city>ANCHORAGE</city>
 <county>ANCHORAGE</county>
 <weight>16211</weight>
 </choice>
 <choice name="99502">
 <city>ANCHORAGE</city>
 <county>ANCHORAGE</county>
 <weight>18626</weight>
 </choice>
 …
 </pool> <!—end of “zips” sub-pool-->
 <weight>624992</weight>
 </choice> <!—end of “AK” choice-->
 …
 <choice name="WY">
 <pool name="zips">
 <choice name="82001">
 <city>CHEYENNE</city>
 <county>LARAMIE</county>
 <weight>34767</weight>
 </choice>
 <choice name="82007">
 <city>CHEYENNE</city>
 <county>LARAMIE</county>
 <weight>15840</weight>
 </choice>
 …
 </pool> <!—end of “zips” sub-pool-->
 <weight>493502</weight>
 </choice> <!—end of “WY” choice-->
</pool> <!—end of “stateZip” pool-->

The stateZip pool above is a population model of the
U.S. taken from publicly available 2000 Census data
(www.census.gov). At the top level, there are still 50
states in the pool. Each state contains a pool of zip
codes; each choice in the zips sub-pool contains the
city and county associated with the zip code. Both the
top-level states pool and the nested zips pools are
weighted by population.

Consider the following SDDL table definition that uses
the stateZip pool:

<table name=”offices”>
 <field name=”OfficeID” type=”int”>
 <iteration base=”1000” count=”1000”/>
 </field>
 <field name=”state” type=”CHAR(2)”>
 <formula>stateZip</formula>
 </field>
 <field name=”zip” type=”CHAR(5)”>
 <formula>stateZip[state].zips</formula>
 </field>
 <field name=”city” type=”CHAR(25)”>
 <formula>stateZip[state].zips[zip].city</formula>
 </field>
</table>

The offices table generated from the definition above
will have information for 1000 offices. Offices will be
distributed within the U.S. according to inter-state and
intra-state population statistics. The state, city, and zip
fields generated for each row will be consistent with
each other.

Given this structural and semantic flexibility, pools can
be used to describe a variety of complex data types.
Using pools, we have so far modeled such diverse
concepts as graphs, maps, state machines, and context-
free grammars.

Parallel Data Generation
Multi-processor systems (clusters, grids) are
increasingly affordable. The size of data sets is
growing – terabyte-sized tables are not uncommon.
Why not take advantage of the former to synthetically
generate the latter?

We designed PSDG with parallel generation capability
as a requirement. We wanted to minimize
communication between generation processes and
maintain deterministic output (for a given input)
regardless of the degree of parallelism.

Previous synthetic data generation frameworks have
supported parallelism to some degree. Gray et al. [8]
described methods for writing special-purpose data
generators in parallel. The MUDD generator [11]
provided a general purpose (though simple) input

language, and decoupled the data description from the
parallelization details. The KRDataGenerator [12] (a
commercialization of [6]), which is graph-based, has a
distributed generation capability but can not describe
data with the detail of SDDL.

PSDG distinguishes itself by providing a very
descriptive input language (SDDL) while supporting
easy parallelism. Like MUDD, PSDG decouples data
generation details from data description; users need not
take parallelism details into account when constructing
an SDDL file.

Each PSDG generation process is launched with the
knowledge of how many processes are participating, as
well as its own process index. With this information, a
generation process can determine the extent of the data
that it is responsible for generating without the need for
inter-process communication.

PSDG slices the generated data horizontally between
generation processes. Generation processes handle
slices in a “striped” fashion: process 0 of N will
generate slices {0, N, 2N,…}, process 1 of N will
generate slices {1, N+1, 2N+1,…}, and so on. We can
use two separate methods of data slicing: Algorithm 1
is used when there are no iterations in the SDDL
description (for a table), and Algorithm 2 is used when
iterations are present.

Generation Algorithm 1
With no iterations present, a table’s row structure is
predictable, and its rows are divided into “swaths”,
each of size SWATHSIZE. The generation processes
generate swaths in an alternating round-robin fashion.
Before generating a swath, the generation process will
call the re-seed function RF(seed, row) (where seed is
the user-specified seed, and row is the start row of the
swath), which uses seed and row to re-seed the random
number generator.

If there is only one generation process, generation
proceeds as follows (assuming SWATHSIZE = 100):

If there are two generation processes, the generation
proceeds in parallel as follows:

Process 0:
RF(seed,0)
Generate rows 0-99
RF(seed,100)
Generate rows 100-199
RF(seed,200)
Generate rows 200-299
…

The random number generator is always re-seeded to a
deterministic value (based on the user-specified seed
and the row number) before generating a swath. Thus
any particular swath will be generated identically
regardless of the number of processes participating in
the generation.

Note that the load balancing for Algorithm 1 is even;
each generation process generates at most SWATHSIZE
more rows than any other generation process.

Generation Algorithm 2
When iterations are present, it becomes more difficult
to deal out constant-sized swaths to each generation
process. Consider the following SDDL snippet:

<table name=”iteration_example”>
 <field name=”deptID” type=”int”>
 <iteration query=”select ID from departments”/>
 </field>
 <field name=”courseID” type=”int”>
 <iteration query=”select ID from courses where
 deptID = [deptID]”/>
 </field>
</table>

How many courseID rows will be generated for each
deptID value? We can’t really tell before running the
actual queries. As a consequence, we don’t know a
priori how to divide the output into equal-sized slices.

However, we do know the number of elements in any
outer iteration element. For query iterations, it is the
number of elements returned by the given query. For
pool iterations, it is the number of choices in the
specified pool. For numeric iterations, it is the value of
the count attribute. Therefore, the table is sliced up
into outer iteration elements (OIEs).

When a single generation process performs generation
algorithm 2, the following occurs:

With 2 processes, the generation proceeds as follows:

Again, the random number generator is always re-
seeded to a deterministic value before generating the
rows associated with an outer iteration element. Thus
the rows associated with any OIE will be generated
identically regardless of the number of processes
participating in the generation.

Note that Algorithm 2 is balanced with respect to the
number of OIEs assigned to the generation processes;
each generation process will handle the generation of at
most one more OIE than its peers. However, the
number of rows associated with an OIE is not
guaranteed to be constant. Therefore, it is possible for
the generation to be unbalanced in terms of the number
of rows generated per generation process.

Performance
As a reference point for generation speed, we generated
the SetQuery [9] and TPC-C [10] benchmark data sets:

Generated MB/Second
Data Set 1 processor 2 processors
Set-Query 5.41 10.69
TPC-C (W=1) 3.58 6.73

The results above were obtained using Pentium 4
processors running at 3 GHz. The slightly sub-linear
speedup is due to serial functionality embedded in our
current iteration logic (which we are removing).

More importantly, we’ve benchmarked PSDG in real-
world applications. We recently collaborated with a
major retailer on a project involving the generation of
10 years worth of realistic store-item-sales data,
resulting in 70 billion rows, or nearly 5 Terabytes of
data. This data had fairly complex inter- and intra-row
dependencies. Running PSDG across 16 1.6-GHz
Itanium processors, we were able to reach data
generation speeds of over 500,000 rows/second.

Conclusion and Future Directions
SDDL provides the functionality and expressiveness
needed in a synthetic data description language. Pools
provide for user-defined domains and data dictionaries.
Formulas and pools allow for intra-row dependencies.
Min/max and distribution constraints support loose
inter-row dependencies, and iteration variables (not
discussed here) support tight inter-row dependencies.
Query pools and query iterations allow for inter-table

Process 0: Process 1:
RF(seed,0) RF(seed,1)
Generate OIE 0 Generate OIE 1
RF(seed,2) RF(seed,3)
Generate OIE 2 Generate OIE 3
… …

Process 0:
RF(seed,0)
Generate OIE 0
RF(seed,1)
Generate OIE 1
RF(seed,2)
Generate OIE 2
…

Process 0: Process 1:
RF(seed,0) RF(seed,100)
Generate rows 0-99 Generate rows 100-199
RF(seed,200) RF(seed,300)
Generate rows 200-299 Generate rows 300-399
… …

dependencies. SDDL pools allow for modeling a rich
array of concepts, from simple domains and reference
tables to graphs, maps, state machines and context-free
grammars.

While SDDL does not currently support the complex
statistical distributions found in [5] and [8], it does
support the use of user-defined plugin functions in
formulas. Complex data distributions (such as
Gaussian and Zipfian distributions) can be enforced
using this mechanism.

The data generator itself (PSDG) provides partitioning
algorithms that allow for the parallel generation of data
sets. This parallel capability makes it possible to
generate large “industrial size” data sets quickly. Our
partitioning algorithms balance processor loads and
make sure that the data generated from a given input
will be the same regardless of the number of processors
across which it is generated. Such deterministic
behavior makes PSDG useful for generating regression
test data sets.

In our design of both SDDL and PSDG, we aimed to
satisfy two goals: (1) provide a rich, flexible,
extendible synthetic data description language, and (2)
support deterministic parallel generation of data sets.
When these two goals have conflicted, we have so far
given priority to the latter. For example, allowing for
“side-by-side” iterations, in addition to nested
iterations, would enhance the descriptive power of
SDDL. However, side-by-side iterations would be
difficult to partition and parallelize, so we have so far
chosen not to implement them.

A number of improvements to PSDG/SDDL are
planned:

• Add SDDL constructs to allow PSDG to handle
circular inter-table data dependencies and
simultaneous multi-table generation

• Add support for passing environment and
command-line generation variables to PSDG,
allowing for the use of a single SDDL file to
generate a number of different data sets

• Add streaming output for applications that require
continuous feeds

In addition to its XML-based specification language
(SDDL), the PSDG engine currently provides a GUI-
based user interface so users can edit SDDL
specifications and control the generation of data sets
using a more user friendly interface. The PSDG engine
also includes an ODBC connection to remote relational
databases so data and pools can be imported or
exported. It is often important to sanitize a real dataset
before release to another organization. We are working
on extending PSDG to extract statistical and
descriptive data from relational databases to facilitate

auto-generation of scrubbed data sets. The user will
specify the desired degree of reality of the scrubbed
copy that PSDG will generate.

In addition to working to improve our data generation
framework, we are collaborating with industrial
partners to extend the modeling capability of SDDL.
One significant target is realistic supply chain data
showing RFID reads throughout a supply chain that
spans manufacturing, transport, warehousing, and
retailing.

For more information on this project, see [13].

References
[1] Turbo Data, http://www.turbodata.ca

[2] GS Data Generator, http://www.GSApps.com

[3] DTM Data Generator, http://www.sqledit.com

[4] RowGen, http://www.iri.com

[5] N. Bruno and S. Chaudhuri. “Flexible Database
Generators,” Proceedings of the 31st VLDB
Conference, pp.1097-1107, 2005.

[6] K. Houkjaer, K. Torp, and R. Wind. “Simple and
Realistic Data Generation,” Proceedings on Very
Large Data Bases, 2006, pp. 1243-1246.

[7] P. Lin et al. “Development of a Synthetic Data Set
Generator for Building and Testing Information
Discovery Systems,” Proceedings of the Third
International Conference on Information
Technology: New Generations, IEEE Computer
Society, Las Vegas, USA, April 10-12, 2006, pp.
707-712.

[8] J. Gray et al. “Quickly Generating Billion-Record
Synthetic Databases,” Proceedings of the ACM
International Conference on Management of Data
(SIGMOD), 1994.

[9] P. E. O’Neil. The Set-Query Benchmark.
www.cs.umb.edu/~poneil/SetQBM.pdf

[10] Transaction Processing Performance Council,
http://www.tpc.org/tpcc

[11] J. Stephens and M. Poess, “MUDD: a Multi-
Dimensional Data Generator”, International
Workshop on Software and Performance, Redwood
City, California, January 2004, pp. 104-109.

[12] KRDataGeneration home page, http://www.data-
generation.com, accessed January 2007.

[13] University of Arkansas Synthetic Data Generation
home page, http://www.csce.uark.edu/~cwt/SDG.

